4,467 research outputs found

    Towards a generalized theory of low-frequency sound source localization

    Get PDF
    Low-frequency sound source localization generates considerable amount of disagreement between audio/acoustics researchers, with some arguing that below a certain frequency humans cannot localize a source with others insisting that in certain cases localization is possible, even down to the lowest audible of frequencies. Nearly all previous work in this area depends on subjective evaluations to formulate theorems for low-frequency localization. This, of course, opens the argument of data reliability, a critical factor that may go some way to explain the reported ambiguities with regard to low-frequency localization. The resulting proposal stipulates that low-frequency source localization is highly dependent on room dimensions, source/listener location and absorptive properties. In some cases, a source can be accurately localized down to the lowest audible of frequencies, while in other situations it cannot. This is relevant as the standard procedure in live sound reinforcement, cinema sound and home-theater surround sound is to have a single mono channel for the low-frequency content, based on the assumption that human’s cannot determine direction in this band. This work takes the first steps towards showing that this may not be a universally valid simplification and that certain sound reproduction systems may actually benefit from directional low-frequency content

    In Situ Calls Of The Marine Perciform Glaucosoma Hebraicum

    Get PDF
    West Australian dhufish (Glaucosoma hebraicum), a marine perciform, possess a swim bladder which has associated muscles that are used in sound production. Individuals have been recorded producing sounds during capture that may be associated with disturbance from their normal behaviour. To determine whether individuals produce sound during natural behaviour, a passive sea-noise logger was deployed on the seafloor for one month in close proximity to low-relief artificialsubstrates occupied by G. hebraicum. During this time, both juvenile and sub-adult G. hebraicum were observed within metres of the logger on numerous occasions. At approximately the same time, sounds with characteristics similar to the disturbance calls of G. hebraicum were detected by the logger. Two types of swimbladder generated calls were recorded, one of widely-spaced pulses and the other of pulses in quick succession The maximum received levels and sound exposurelevels of the recorded calls were 132 dB re 1 μPa and 121 dB re 1 μPa2.s, respectively. Based on previously determined G. hebraicum source levels and time of arrival techniques (direct and surface-reflected ray paths), the vocalising fish were estimated at between 1 and 19.5 m from the hydrophone and thus within the area where they had been observed. This study has provided evidence that juvenile G. hebraicum produce sounds at similar source levels to those generated during human induced disturbance. This indicates that sound is produced by individuals of this species during normal behaviour, but may or may not be associated with natural sources of disturbance

    Are training and education mutually exclusive?

    Get PDF
    Stage’ at the PLASA London show, October 2015. Our talk was in response to a view held widely in the live event industry that degree level programs do not adequately prepare students for the industry. We outlined the approaches to real-world learning that we have applied over the years in the Sound, Light and Live Event Technology degree and the Technical Theatre Degree and described the Learning Theatre. We presented a number of case studies of high profile graduate destinations

    Exomoon simulations

    Full text link
    We introduce and describe our newly developed code that simulates light curves and radial velocity curves for arbitrary transiting exoplanets with a satellite. The most important feature of the program is the calculation of radial velocity curves and the Rossiter-McLaughlin effect in such systems. We discuss the possibilities for detecting the exomoons taking the abilities of Extremely Large Telescopes into account. We show that satellites may be detected also by their RM effect in the future, probably using less accurate measurements than promised by the current instrumental developments. Thus, RM effect will be an important observational tool in the exploration of exomoons.Comment: 5 pages, 2 figures with 9 figure panels, accepted by EM&

    Fluid/solid transition in a hard-core system

    Get PDF
    We prove that a system of particles in the plane, interacting only with a certain hard-core constraint, undergoes a fluid/solid phase transition

    Comment on 'A first map of tropical Africa's above-ground biomass derived from satellite imagery'

    Get PDF
    Copyright Institute of Physics © 2011We present a critical evaluation of the above-ground biomass (AGB) map of Africa published in this journal by Baccini et al (2008 Environ. Res. Lett. 3 045011). We first test their map against an independent dataset of 1154 scientific inventory plots from 16 African countries, and find only weak correspondence between our field plots and the AGB value given for the surrounding 1 km pixel by Baccini et al. Separating our field data using a continental landcover classification suggests that the Baccini et al map underestimates the AGB of forests and woodlands, while overestimating the AGB of savannas and grasslands. Secondly, we compare their map to 216 000 × 0.25 ha spaceborne LiDAR footprints. A comparison between Lorey's height (basal-area-weighted average height) derived from the LiDAR data for 1 km pixels containing at least five LiDAR footprints again does not support the hypothesis that the Baccini et al map is accurate, and suggests that it significantly underestimates the AGB of higher AGB areas. We conclude that this is due to the unsuitability of some of the field data used by Baccini et al to create their map, and overfitting in their model, resulting in low accuracies outside the small areas from which their field data are drawn

    The need for speed : escape velocity and dynamical mass measurements of the Andromeda galaxy

    Get PDF
    Our nearest large cosmological neighbour, the Andromeda galaxy (M31), is a dynamical system, and an accurate measurement of its total mass is central to our understanding of its assembly history, the life-cycles of its satellite galaxies, and its role in shaping the Local Group environment. Here, we apply a novel approach to determine the dynamical mass of M31 using high velocity Planetary Nebulae (PNe), establishing a hierarchical Bayesian model united with a scheme to capture potential outliers and marginalize over tracers unknown distances. With this, we derive the escape velocity run of M31 as a function of galacto-centric distance, with both parametric and non-parametric approaches. We determine the escape velocity of M31 to be 470 ± 40  km s−1 at a galacto-centric distance of 15  kpc, and also, derive the total potential of M31, estimating the virial mass and radius of the galaxy to be 0.8±0.1×1012M⊙ and 240 ± 10  kpc, respectively. Our M31 mass is on the low-side of the measured range, this supports the lower expected mass of the M31-Milky Way system from the timing and momentum arguments, satisfying the H i constraint on circular velocity between 10 ≲ R/ kpc < 35, and agreeing with the stellar mass Tully-Fisher relation. To place these results in a broader context, we compare them to the key predictions of the ΛCDM cosmological paradigm, including the stellar-mass–halo-mass and the dark matter halo concentration–virial mass correlation, and finding it to be an outlier to this relation.PostprintPeer reviewe

    Tidal range energy resource assessment of the Gulf of California, Mexico

    Get PDF
    There is growing interest in harnessing renewable energy resources in Latin America. Converting the energy of the tides into electricity has the distinct advantage of being predictable, yet the tidal range resource of Latin America is largely unquantified. The northern part of the Gulf of California (GC) in Mexico has a relatively large mean tidal range (4m–5m), and so could be a potential site for tidal range energy exploitation. A detailed quantification of the theoretical tidal range energy resource was performed using tidal level predictions from a depth-averaged barotropic hydrodynamic model. In addition, a 0-D operation modelling approach was applied to determine the power that can be technically extracted at four key sites. The results show that the annual energy yield ranges from 20 to 50 kWh/m2, while the maximum values are between 45 and 50 kWh/m2 in the vicinity of the Gulf of Santa Clara. Within the region, the Gulf of Santa Clara is one of the most promising, delivering a technical annual energy output of 125 GWh (ebb-only generation), 159 GWh (two-way) and 174 GWh (two-way with pumping) within an impoundment area of 10 km2. This equates to 50%, 40% and 33% of the absolute energy conversion relative to a much-studied reference site (Swansea Bay, UK) that has been under consideration as the world’s first tidal lagoon power plant. This study provides the basis for more detailed analysis of the GC to guide selection of suitable sites for tidal range energy exploitation in the region
    corecore